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Using the idea of the macroscopic quantum wave function and the definition of the classical chaos, we
analytically reveal that the probability density of two periodically driven and weakly coupled Bose-Einstein
condensates is deterministic but not predictable. Numerical calculation for the time evolutions of the chaotic
probability density demonstrates the analytical result and exhibits the nonphysical implosions and ultimate
unboundedness. A method for controlling the implosions and unboundedness is proposed through adjustment
of the initial conditions that leads the probability density to periodically oscillate.
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[. INTRODUCTION dictable. That is, the chaotic probability density contains
some terms, which are analytically unsolvable and numeri-
Quantum mechanics of the classically chaotic systems hegally uncomputable. The incomputability causes the non-
been a subject of wide interest over the last few ygaest].  physical implosion[27] and ultimate unboundedness, and
However, the investigations on the dynamics of periodicallyleads to the inpredictability. We call the chaos of macro-
perturbed one-dimensional systems demonstrated that tt§§0piC wave function the “macroscopic quantum chaos.” By
stochasticity of classical chaos is suppressed in the fu”@djusting the initia_l cond_itions of the unperturbed solution,
quantum-mechanical treatmef,6]. This is the so-called W€ prove that the |mpIOS|on.gnd unbpundedness can pe con-
breakdown of the correspondence principle for the chaotidrolled such that the probability density becomes predictable

systemg7,4]. Therefore, existence of the quantum chaos ha§’erIOdlcal function.
become a problem of increasing interg8L A cause of the
guantum suppression of chaos is that the classical chaos gen-

erally appears in some nonlinear systems and the corre- Adopting the time-dependent self-consistent field method,

sponding quantum Schdinger equations are linear. There- the macroscopic one-body wave functiolﬂ(F,t) for a

fore, a direct method for investigating the chaos assomate\(/jveakly interacting BEC in a trap potentM[rap(F,t) at zero

with quantum theory is to seek a system that is nonlinear iq e . o
. : emperature satisfies the Gross-Pitaevskii equati@n 2
both classical and quantum mechanics. The trapped Bose- P qud 8

Einstein condensate@BECS whose quantum motions are A ) )
governed by some nonlinear ScHimger equations supply i — =5 VW +[Viap T Go| V], ()
such systems for Uy9)].

Since the experimental observation of the Bose-Einsteinvhereg,=4#2%a/m is the interatomic scattering pseudopo-
condensation in a dilute gas of confined atdd®-14, there  tential with a and m being the atomic scattering length and
has been much interest in the new quantum phenomena, sugtass, respectively. In order to investigate the dynamical os-
as the macroscopic quantum self-trappit§,16], the quan- cillations of the isolated double-well boson Josephson junc-
tum coherent atomic tunnelind 7,18, and the physics of tion (BJJ, we employ the time-dependent variational wave
discrete nonlinear systeni$9,20. The chaotic behavior in function[15,29
two coupled BECs with periodical or kicking trapping poten- . .
tial have been treatef21—24. Recently, using some direct W= () D1(r)+ () Dy(r) 2
perturbation techniques, we investigated spatiotemporal R
chaos and divergences of quantum-mechanical wave funavith ®;(r) obeying
tions[25], and temporal chaos of quantum-mechanical phase
for the superconductor Josephson juncfid@l. In this paper, J' q)i(r*)q)j*(r*)drz & for i,j=1,2 (3
we will apply these results to study the inpredictability of
macroscopic wave functions and exhibit the exi§ten0(_a Oguch that the normalization condition becomes
chaos through two zero-temperature BECs confined in a
double-well magnetic trap. The result shows that probability R
density of the quantum system is deterministic but not pre- f [P (r,0)]2dr=[¢|*+]al>=Ni+No=1.  (4)

II. CHAOTIC SOLUTION OF THE SYSTEM

Here we have set the wave functionsy(t)
*Email address: adcve@public.cs.hn.cn =N;(t)exdié(t)]. Differing from the previous definitions,
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the above wave function has been normalized so the norms X=—(14+2AH)x—2A2x3— AE[H+ AE/2
[i]?2=N;(t) for i=1,2 are the relative occupations afdt)
the phases of states. Substituting E2). into Eq. (1) and +(AE+A)x+3Ax?]. (12

integrating over spatial coordinates reveals tifdt) for i
=1,2 are described by the nonlinear equatiftig, 30, 31 The functionx(t) is a half of the population imbalancé{

: —Ny).
i7p1=[Eq+ U] a| *1p1— K, (5 The parametersAE#0 describes the trap asymmetry.
When AE is very small, the terms proportional to it can be
i7ithy=[Ex+ Uy o] 21— Kify. (6)  regarded as perturbations to the symmetric system Wih

=0. In addition to a time-independent trap asymmeXiy,,
The constantE;, U;, and K can be written in terms of we can impose a periodically driven term into the trap asym-
(I)I(F) wave-function over|api—__l and E, denote Zero_point metry, by a small oscillation in the laser barrier pOSitiOﬂ
energies for each condensalte; andU, are proportional to [17,32, such that
the mean-field energies; and describes the tunneling dy-
namics between two condensates. For a time-independent AE=AE(t)=AEy+AE;sinwt for [AEq|<1.
parameterK, applying Eq.(4), N,=1—N,, and combining (13
Eq. (5) with its complex conjugate producessN;
=2iK{yN1(1—Nj)sin(¢,—6,). Defining the relative phase
d(t)=64(t) — 6,(t), rescaling the time to a dimensionless
variable Xt/# and applyingy; =+/N;(t)exdia(t)] to Egs.
(5) and(6), we have the set of BJJ equations,

Application of Eqg.(13) to Eqg.(9) makes the latter the time-
dependent HamiltoniaH =H (N, , ¢,t) with the time deriva-
tive

. gH @H. GH. oH  dAE
H(t)= — + ——

: Ni+ —p=—=———N
N;=/N;N, sing=+N;(1—N;)sin¢, (7) gt Nyt c?d>¢ at dt =t

1
. 1-2N; =—wAE, coswt| X+ —). (14)
é=A—AE—2AN;+ 0S¢. (8) 2

——¢
VN1(1—-Ny)

Integrating this equation yields
The dimensionless parameték& and A determine the dy-

namic regimes of the BEC atomic tunneling and can be ex- 1
pressed as\E=(E;—E,)/(2K)+(U;—U,)/(4K) and A H(t)=Hgy+Hq(t), Hl(t)=—wAE1f coswt x+§ dt,
=(U;+U,)/(4K). Equationg7) and(8) infer thatN, and ¢ (15)

are the formally canonical momentum and its conjugate co-

ordinate, which obey the formally canonical eguat_idmis whereH, is a constant andH,(t) a first-order small term
=—dH/d$, ¢=dHIIN, for the conserved Hamiltonian proportional toA E;. Combining Egs(13) and(15) with Eq.
(12) result in the Duffing equation with periodical perturba-
H=—AEN;~ A(2N;—1)%4+ N1 (1-Nj)cos¢. (9)  tions. By making use of the Melnikov-function or numerical
o ) method, chaotic oscillation of the system has been demon-
The second-order derivative 8f; can be derived from Egs. gtrated21,33. In the following sections, we will use a direct

(1)—(9) as perturbation approachd@4,34 to analyze the chaotic be-
R R havior of the macroscopic wave function. We expantb
. ONg.  INp. :
Ry= 2N+ Sotg= (1= 2Ny 2+ (A—AE—2ANy)  (retorder
N, ad
X=Xo+ X1, |Xo|>|X1|~|AE|. 16
X[H+AEN;+A(2N;—1)%4]. (10) o Xar ol Pl ~[AE] (16)

Herex, denotes the unperturbed solution andis the first-
order corrections. Inserting the above expression and Eg.
(15) into Eq. (12) yields the zero-order equation

For the constanfAE, Raghavan and coworkers gave a
complicated exact solution in terms of elliptic functidis].
WhenAE depends on time, it is quite difficult to analytically
solve this equation. Therefore, in order to analyze the chaotic .
motion with time-dependenAE, we have to consider the Xo=—(2AHo+1)xo—2A%] 17)
casg AE|<1 and seek a perturbed solution. The well-known
Melnikov's chaos is just the chaos of perturbed solutionsand first-order equation
[21]. To do this, we set
v — 2,2
Ny=1/24%, Np=1/2—x, x=N,—1/2=(N;—N,)/2 X1 =~ (2AHo+ 1)xg —6A XK —eq(1),

@D ()= AE[Hot Axo(t) + 3AXE(0)]+ 2AH 1 (0)Xo(1).
and change Eq.10) into (18
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0.5 ever, we can easily prove that, using the lpital rule, Eq.
0.48 (20) is bounded, if and only if it satisfies the condition
0.46 [24,34
0.44
T 0.42 t
0.4 .= lim f X;&1(t)dt=0. (23
0.38 ttowd A
0.36
0 10 20 30 40 Froml,—1_=0 eliminating the constark yields the well-
£ known Melnikov function
FIG. 1. Plot of the time evolutions of the dimensionless Hamil- .,
tonianH(t) for the dimensionless time normalized do *=7/2K. M(to) = fﬁmxlsl(t)dtzo, (24)

The unperturbed Eq17) has the well-known periodical so- which indicates the existence of chaos and the chaotic region
lution for (2AH,+1)>0 and homoclinic solution for in parameter spad@1,24). We call the solutior{20) obeying
(2AHp+1)<0. We are interested in the latter associatedthe chaos criteriori24) the “chaotic solution”[26]. Further
with chaos, inserting N4(t) into Eq. (7), we find the phase difference
¢(1) is also chaotic. Applying the chaotic relative occupa-
Xo(t)=V=(2AHo+1)/A%seché, &=—(2AHq+1)t tions | ()[>=Ny(t)=1/2+X%, |ghy(t)|?=Ny(t)=1/2—x
iC and phase differencé(t) to Eq.(2) Ieadf to the correspond-
’ ing chaos of the probability density’ (r,t)|2. Note that the
_ 2 chaos for the probability density comes from the definition of
C=Ar sectixy(to)/ V= (2AHo+1)/A%) the classical chaos. This gives an important connection be-
—J=(2AH+ 1)t, (199  tween the classical chaos and macroscopic quantum chaos.
In the chaotic region of parameter space, although the prob-
for (2AHo+1)<0 with t, being the initial time. Applying  ability density is deterministic for a set of fixed initial con-

Eq. (19) to Eq.(18), we construct the general solutif®4] ditions and system parameters, it sensitively depends on the
conditions and parameters, therefore, is unpredictable. These

t will be numerically illustrated in the following section.

t
x1=x’1’fo161(t)dt—xifo’l’sl(t)dt, (20

lll. INPREDICTABILITY OF THE CHAOTIC

whereA andB are the integration constants, andx; the PROBABILITY DENSITY

functions Before computing the time evolution of probability den-
_ sity, it is necessary to analyze the incomputability of the
X1=Xo=[—(2AHy+1)/A]seché tanhé, chaotic solution20). Combining Eqs(20) and(21) with Eq.

(18) we perceive that the first term of E(RO) insists of an

unbounded functiow’(t) and an analytically unsolvable in-
x{=x1J (x7) ~2dt=(A/2)[—(2AHo+1)] %2 tegration, which cannot be expressed as a finite form of el-
ementary functions. To numerically give the time evolution
X seché(2— 3¢ tanhg—sintf &). (21)  of Eq.(20), the small deviations from the unsolvable integra-

tion are unavoidable, since any computer cannot calculate
In the first-order approximation, using(t) in Eq. (19) in-  the infinite terms implied in the integration. These deviations
stead ofx in Eq. (15 can give the integrand dfl; as an  also may come from the use of different numerical integra-
explicit function of time. However, the integration is analyti- tion methods and different integration steps, even different

cally unsolvable. Taking the parameter set precisions for the representation of real numbers in the com-
puter. On the other hand, the deviations necessarily depend
Ho=0.5, A=-2, w=1, AEy=AE;=0.1, on the initial conditions associated with and the system
parameters. Any infinitesimal deviation will destroy the
C=x/2, A=B=0 (22 boundedness conditiof23) and be amplified exponentially

by the exponentially increasing functiofj(t), until infinity
from Egs. (15 we numerically plot the time evolution of ast—c. This is just the so-called sensitive dependence of
H(t) as Fig. 1. The curve shows the Hamiltonian tending tochaos on the parameters and algorithm. Thus we theoreti-
periodically oscillate with the increase of time. Combining cally demonstrate that the corrected solut{@f) is analyti-
Eq. (22) with Egs. (16) and (19) we have the unperturbed cally bounded but numerically unbounded, therefore uncom-
population imbalancex(t)>0 for all times, which implies putable. The analytical insolvability and numerical

the chaotic self-trappinf23,24. incomputability lead to the inpredictability of the probability
Generally, the first correctio(20) is unbounded, because densities.
of the unboundedness gf{ as time tending to infinity. How- Applying the functionsy(t), £4(t) and the parameters in
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Egs.(22) to Egs.(16), (20), and(21) makes the solution the with variableé=t+ 7/2 and
explicit form

x=0.5secht+x(1), Hy(8)= —o.o5f§sin E(1+sechd)ds. (26
0
X1(t)=0.5 sech¥(2— 3¢ tanhg—sint? €)

Given Eqgs.(25) and(26), we find that the first integrand in
Eq. (25), namely, the integrand in Eq&23) and (24) is an
odd function such that the boundedness condit&8) with
X (0.5—seché— 1.5 sech ¢) —2H(¢)seché]dé A=0 and chaos criteriof24) have been satisfied.
p In Ref. [27], Saito and Ueda numerically gave the time
—0.55ech§tanh§f seché(2—3¢&tanhg—sink? &) evolution of the wave function at the origin of spatial coor-
0 dinate, and showed the intermittent implosion for the trapped
BECs with an attractive interaction. For the considered two-

X[(0.1+0.1 0.5— —1.5sech N
. cos)( secht seché) state model (2), the probability density atr=r
—2H4(§)seché]dé (25  (=constant vector) reads

X Fsecrftanhg[(o.lJr 0.1 cosft)
0

|
[W(ro,0)|2= P 1(ro) |2 s (1) |2+ P (o) 2| iha(1) [P+ D (Fo) P (Fo) ¢ra(1) 5 (1) + DT (ro) (o) ¢ (1) ra(1)
=|®1(ro)| 2Ny (t) + [P (ro) |PNo(t) + @ 1(ro) @3 (ro) VN;Ne'*+ DY (ro) Do(ro) VN Ne '
= |®4(ro)| 2Ny () + [P 5(ro) |PNo(t) + VNIN{[ P 1(ro) @3 (o) + D (ro) P o(ro)Icoseh
+[@(r) @3 (o) — DF (ro)P(ro) i singh}. (27)

By making use of Eq4.7), (9), (11), and(15), the probability ) . A
density becomes X(t)=(2AHo+1)A ™" sechftanhé+ leAxlsl(t)dt

. t
W (70,07 =[@1(To) [2(1/2+ %) +|®o(Fo) A(1/2-X) 5 [ sesvat (30
+[@1(Fo)®3 (ro) + DT (1) P,(ro)]

When th t 2 i ted, the functiom(t
w [Ho+Ha(t) + AE(H) (x-+ 1/2) + AX?] en the parameter sé22) is adopted, the functiom(t)

denotes the time derivative of E(R5), namely,
Hi[P1(Fo) D3 (1) — DT () P(ro) IX(1).

28 X(t) = — 0.5 sech¢ tanhé+ 0.5(3¢ seché — 6 sech &

—6 seché tanhé—sinhé)
We set @;(rg)=VRy(ro)e'®1,  d,(rp)=VRy(rp)e'®, » Fsechgtanhg[(o_ﬂo_lm@
al—a2=a(Fo), obtaining 0
X (0.5—seché—1.5sech &) — 2H,(&)seché]dé
|W(rg,1)|2=Ry(rg)(1/2+X) + Ry(r o) (1/2—X) —0.5(sechi £¢—sechg)
+2VRy(o)Ry(ro)cosa(ry) X f ‘ seche(2— 3¢ tanhe—sint? ¢)
0

X[Hg+Hq(t)+AE(t)(x+ 1/2)+ Ax?]
X[(0.1+ 0.1 cost) (0.5 seché — 1.5 sech €)

—2VR(rR,(r)Si ro)X(1). 29
1(ro)Ra(ro)sina(ro)x(t) 29 —2Hy(&)seché]dé. (3Y)

Here the functiori((t) is given by Eqgs(16), (19), and(20) The constant®;, R,, anda can be normalized by suitable
as units and may take different values that are associated with
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> >
P P
t';; 3 (';" 4
8 2.5 § 3.5
a 5 =) 3
= 2 2 hwwwwwwwwwwy
— 1 a1 i)
- -~
E 0.5 90.5
o 0 24 68101214 3 0 20 40 60 80 100
A Time & Time
B FIG. 3. Periodical oscillation of the dimensionless probability
5 3 b density for the coordinateE0 corresponding to the constant set
R;=R,=1, a=0.
Q 1 2 ’
X 2. 2
215 —1.732 0%(t). The corresponding curve of the time evolu-
s 1 tion is plotted in Fig. 2a) as the dotted line.
-5 0.5 Case 4: R=R,,sina=0. TakingR;=R,=1, =0 and
o omitting the second-order small terms give
§ 14 14.214.414.614.8
Ay Time |W(rg,t)|>=2.05+0.1seckt—sech &
FIG. 2. Plots of the chaotic probability densitiei(r,,t)|? ver- +0.1 cosé(seché+1)
sus time, which are dimensionless. The solid curveancorre-
sponds to the constan®;=1.5,R,=0.5, a=#/3. The dashing £
line is associated witlR;=1, R,=0 and the dotted line withy —-0.1 0 siné(1+sechf)d&—2 sechexy(§).
=m/2, Ry=1.5, andR,=0.5. These curves contain some nonphysi-
cal implosions and infinities for>14, which are amplified irtb). (33

differentr,. We shall consider the general case and severajve plot its time evolution in Fig. 3.
typical cases to plot the time evolutions of the probability The curves in Fig. @) display that the probability densi-

density as follows. ties of different spatial point, are nonperiodical for small
~ Case 1: the general cas@ny term of Eq.(29) does not  (ime and occur implosions aftér 14, and ultimately tend to
identically vanish. Let the constants b&;=1.5,R;  jnfinity. Dense parts of the curves describe the implosions
=0.5, «=7/3. Substituting them and the functiohi§(t) in  ang show the inpredictability of the states, which are exhib-
Eq. (26) and AE(t)=0.1(1+cos¢) into Eq.(29), produces  jted in Fig. 2b). From Egs.(25) and (31) we can perceive
that the two integrations of them is unsolvable and the first
W(r,,t)|2=1.476 314 0.043 301 Bseché + cosé(1 one is multiplied by an exponentially increasing function. On
¥ (ro.] % he & the one hand, under the boundedness conditZs), the
I'Hopital rule infers the orbit25) and(31) to be analytically
bounded at an infinite time. On the other hand, in numerical
computation, some unavoidable small deviations from the
unsolvable integration may be exponentially amplified by the
—0.433 013 sechié) +x(¢) exponentially increasing function, until infinity as—oe.
. This contradiction between the analytical results and numeri-
—1.73205 seckix,(£) — 1.5(¢), (32 cal ones reveals that the probability dengi®p) with Egs.
where second-order small terms have been omitted. Subs .ng)thsén(:](USrTl])e;iscgln(;;);rllﬁtitazgIel.:i;'h(eﬁ)ln;[?(laosr:g?]spha;r;(iicg}flglrty
tuting x(£) andx,(¢) in Egs.(25) andx() in Eq.(31) into  pyrely mathematical, which completely come from the nu-
Eq. (32), we employ the Mathematica to plot the solid curve merical incomputability[8,26]. In Fig. 3 we show a quite
. tge prozt?ablht.y d?n‘?ty ve&sus t'ge n Flg(a?_S HinoR interesting result that for some spatial coordinsﬁ@ef case
ase <. a simpiest cases; or K, 1S z€ro. SetingRy 4 e implosion and infinity disappear and the motion ap-
=1, R,=0 and fixing other parameters to Eq22) yields proaches periodical one
the probability density |W(ro,t)[*=Ny(t)=x(t)+1/2, Generally, the analytically unsolvable integrations implied
which is drawn in Fig. 2a) as the dashing line. in Eq. (29) makes the probability density the analytically
Case 3: R#R;,cosa=0. We select the constan®®  unpredictable. And the implosions and infinity of numerical
=m/2, Ry=1.5, andR,=0.5, getting| ¥ (ro,t)|?=1+x(t) results lead to the numerical inpredictability of the probabil-

+seché) — fg siné(1+ sechg)dg}
0
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ity density. The inpredictability of deterministic system is a
basic feature of the macroscopic quantum chaos.

tem. However, as we have seen that the system exists some
chaotic states characterized by the implosions and unbound-
edness of numerical solutions, which are unpredictable. In
order to theoretically predict the physical properties, we have FIG. 4. Periodical oscillation of the dimensionless probability
to control the implosions and unboundedness. We shall proveensity versus dimensionless time for the initial conditiapé)
that regulating the initial conditions can attain the purpose. ~0, Xq(t5)~0 and the constant®;=1.5,R,=0.5, a=/3,
We recall the relationship between the initial conditionswhere the implosions and infinities have been controlled.
and the homoclinic solutiofl9) of Eq. (17). The first inte-
gration of Eq.(17) is

0 20 40 60 80 100
Time

D
D
-
a 2
g 1.75
IV. CONTROLLING THE IMPLOSIONS A 1.5 A AANAANANNANNANNNNAN
AND UNBOUNDEDNESS s 1 2%
D
The probability density is an impotant quantity for the m0.75
considered quantum system. An useful theory should enable o 0.5
. . . 9 0.2
us to predict it and the corresponding properties of the sys- 8
9
[aT]

odical orbit. Inserting suck(t), x(t), and Egs.(15), H;~
—0.05sirt, into Eqg.(29) and selectingr;=1.5,R,=0.5, «
= 7/3 of the general case, we arrive at

X5()=C1—(2AHo+ 1)X3(1) —Axg(t),  (34)

Cy=x(tg) — (2AHo+ 1)x3(to) — AX(ty) |W(rg,t)[2=1.476 314 x(t)— 1.5x(1)
with ty being the initial time. This equation gives the ho-
moclinic solution only for the integration consta@t =0,
which limits the initial values(t,) andxq(te) to depend on
each other. Another integration const&hin the second of
Egs.(19) possesses an interesting property, namely, when the
initial value Xo(to) of the half population imbalance is equal This is also a periodical function of time that has been nu-

t
=1.476 314 0.062@*[ el(1+sint)dt
0

t
) (37

+ 0.01253tf e Y(1+sint)dt.

to zero, the constai@@ becomes infinity for finite,. Now we

merically illustrated in Fig. 4. The periodical oscillation of

assume that one experimentally adjusts the initial values tehe probability density is predictable. Thus we have con-

Xo(to)~0 andxy(to)~0 so thatC,=0 andC—o. In this
case, we take the parametétg=0.5,A=—2, =1 such
that the variable in Eqs(19) becomesé=Ilim¢_,..(C+t).
Thus we have good approximation

sinhé~ lim e©*Y2, secht~ lim 2e (¢,

Coo

tanh(C+1)

C—o»

~1. (39

Using this approximation to Eq$18), (19), (20), (21), and
(13) getsxg~0, e~HEAE(t)=0.5AE(t)=0.05(1+sint)
and the orbit

t
x~x1%0.0253"f e'(1+sint)dt—0.02%
B

t
X f e Y(1+sint)dt,
A

. . t
X=X~ — 0.0253"J' e'(1+sint)dt—0.02%"
B

X Jte’t(l+sint)dt. (36)
A

Obviously, boundedness of the solution neéds~ and B
being finite. SettingA=«, B=0, EQgs.(36) represent a peri-

trolled the implosions and unboundedness, through the ad-
justments of the initial conditions. Knowing Eqgl1) and
(16), the considered initial conditiong,(to)~0 andxo(ty)

~0 means thal; (to) ~Ns(te) andN;(te) ~N,(tg)~0, that

is, initially, the unperturbed particle numbers in each trap to
be approximately same and invariable. Therefore, if one can
realize such initial conditions experimentally by adjusting
the system, the macroscopic quantum chaos will be sup-
pressed.

V. CONCLUSION

In summary, we have studied the macroscopic quantum
chaos of two zero-temperature BEC confined in a double-
well magnetic trap. Using the time-dependent self-consistent
field method and the macroscopic one-body wave function,
we investigated the BJJ equations that describe time evolu-
tions of the relative occupations and phase difference. Under
the Melnikov criterion of classical chaos, we find the chaotic
quantum system possessing deterministic but unpredictable
probability density. That is, the probability density is analyti-
cally bounded but numerically unbounded, and the numerical
result appears the nonphysical implosions and unbounded-
ness. This makes the system the analytically unsolvable and
numerically uncomputable, which result in the theoretical in-
predictability of the chaotic probability density.

It is clear that although a regular quantum system must be
made probability interpretation, the corresponding probabil-
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ity is deterministic and predictable. However, the chaoticnamely, regulating the initial conditions to make the chaotic
guantum systems not only need probability interpretation busolution the periodical one.

also the corresponding probability is unpredictable. Accord-

ing to the general definition, chaos is merely a synonym for ACKNOWLEDGMENTS
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