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Chaotic probability density in two periodically driven and weakly coupled
Bose-Einstein condensates
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Using the idea of the macroscopic quantum wave function and the definition of the classical chaos, we
analytically reveal that the probability density of two periodically driven and weakly coupled Bose-Einstein
condensates is deterministic but not predictable. Numerical calculation for the time evolutions of the chaotic
probability density demonstrates the analytical result and exhibits the nonphysical implosions and ultimate
unboundedness. A method for controlling the implosions and unboundedness is proposed through adjustment
of the initial conditions that leads the probability density to periodically oscillate.

DOI: 10.1103/PhysRevE.66.026202 PACS number~s!: 05.45.Ac, 03.75.Fi, 05.45.Mt, 05.30.Jp
h

ll
t

ul

ot
ha

g
rr

e-
te

r
os
e

te

su

n-
t
or
un
as

of
o

n
lit
re

ins
eri-
on-
d

ro-
By
n,
con-
ble

od,

o-
d
os-
nc-
ve

,

I. INTRODUCTION

Quantum mechanics of the classically chaotic systems
been a subject of wide interest over the last few years@1–4#.
However, the investigations on the dynamics of periodica
perturbed one-dimensional systems demonstrated that
stochasticity of classical chaos is suppressed in the f
quantum-mechanical treatment@5,6#. This is the so-called
breakdown of the correspondence principle for the cha
systems@7,4#. Therefore, existence of the quantum chaos
become a problem of increasing interest@8#. A cause of the
quantum suppression of chaos is that the classical chaos
erally appears in some nonlinear systems and the co
sponding quantum Schro¨dinger equations are linear. Ther
fore, a direct method for investigating the chaos associa
with quantum theory is to seek a system that is nonlinea
both classical and quantum mechanics. The trapped B
Einstein condensates~BECs! whose quantum motions ar
governed by some nonlinear Schro¨dinger equations supply
such systems for us@9#.

Since the experimental observation of the Bose-Eins
condensation in a dilute gas of confined atoms@10–14#, there
has been much interest in the new quantum phenomena,
as the macroscopic quantum self-trapping@15,16#, the quan-
tum coherent atomic tunneling@17,18#, and the physics of
discrete nonlinear systems@19,20#. The chaotic behavior in
two coupled BECs with periodical or kicking trapping pote
tial have been treated@21–24#. Recently, using some direc
perturbation techniques, we investigated spatiotemp
chaos and divergences of quantum-mechanical wave f
tions @25#, and temporal chaos of quantum-mechanical ph
for the superconductor Josephson junction@26#. In this paper,
we will apply these results to study the inpredictability
macroscopic wave functions and exhibit the existence
chaos through two zero-temperature BECs confined i
double-well magnetic trap. The result shows that probabi
density of the quantum system is deterministic but not p
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dictable. That is, the chaotic probability density conta
some terms, which are analytically unsolvable and num
cally uncomputable. The incomputability causes the n
physical implosion@27# and ultimate unboundedness, an
leads to the inpredictability. We call the chaos of mac
scopic wave function the ‘‘macroscopic quantum chaos.’’
adjusting the initial conditions of the unperturbed solutio
we prove that the implosion and unboundedness can be
trolled such that the probability density becomes predicta
periodical function.

II. CHAOTIC SOLUTION OF THE SYSTEM

Adopting the time-dependent self-consistent field meth
the macroscopic one-body wave functionC(rW,t) for a
weakly interacting BEC in a trap potentialVtrap(rW,t) at zero
temperature satisfies the Gross-Pitaevskii equation@17, 28#

i\
]C

]t
5

\2

2m
¹2C1@Vtrap1g0uCu2#C, ~1!

whereg054p\2a/m is the interatomic scattering pseudop
tential with a and m being the atomic scattering length an
mass, respectively. In order to investigate the dynamical
cillations of the isolated double-well boson Josephson ju
tion ~BJJ!, we employ the time-dependent variational wa
function @15,29#

C5c1~ t !F1~rW !1c2~ t !F2~rW ! ~2!

with F i(rW) obeying

E F i~rW !F j* ~rW !dr5d i j for i , j 51,2 ~3!

such that the normalization condition becomes

E uC~rW,t !u2 dr5uc1u21uc2u25N11N251. ~4!

Here we have set the wave functionsc i(t)
5ANi(t)exp@iui(t)#. Differing from the previous definitions
©2002 The American Physical Society02-1
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the above wave function has been normalized so the no
uc i u25Ni(t) for i 51,2 are the relative occupations andu i(t)
the phases of states. Substituting Eq.~2! into Eq. ~1! and
integrating over spatial coordinates reveals thatc i(t) for i
51,2 are described by the nonlinear equations@17, 30, 31#

i\ċ15@E11U1uc1u2#c12Kc2, ~5!

i\ċ25@E21U2uc2u2#c22Kc1. ~6!

The constantsEi , Ui , and K can be written in terms o
F i(rW) wave-function overlaps,E1 andE2 denote zero-point
energies for each condensate;U1 andU2 are proportional to
the mean-field energies; andK describes the tunneling dy
namics between two condensates. For a time-indepen
parameterK, applying Eq.~4!, N2512N1, and combining
Eq. ~5! with its complex conjugate producesi\Ṅ1

52iKAN1(12N1)sin(u12u2). Defining the relative phase
f(t)5u1(t)2u2(t), rescaling the time to a dimensionle
variable 2Kt/\ and applyingc i5ANi(t)exp@iui(t)# to Eqs.
~5! and ~6!, we have the set of BJJ equations,

Ṅ15AN1N2 sinf5AN1~12N1!sinf, ~7!

ḟ5L2DE22LN11
122N1

AN1~12N1!
cosf. ~8!

The dimensionless parametersDE andL determine the dy-
namic regimes of the BEC atomic tunneling and can be
pressed asDE5(E12E2)/(2K)1(U12U2)/(4K) and L
5(U11U2)/(4K). Equations~7! and~8! infer thatN1 andf
are the formally canonical momentum and its conjugate
ordinate, which obey the formally canonical equationsṄ1

52]H/]f, ḟ5]H/]N1 for the conserved Hamiltonian

H52DEN12L~2N121!2/41AN1~12N1!cosf. ~9!

The second-order derivative ofN1 can be derived from Eqs
~7!–~9! as

N̈15
]Ṅ1

]N1
Ṅ11

]Ṅ1

]f
ḟ5~122N1!/21~L2DE22LN1!

3@H1DEN11L~2N121!2/4#. ~10!

For the constantDE, Raghavan and coworkers gave
complicated exact solution in terms of elliptic functions@15#.
WhenDE depends on time, it is quite difficult to analyticall
solve this equation. Therefore, in order to analyze the cha
motion with time-dependentDE, we have to consider the
caseuDEu!1 and seek a perturbed solution. The well-know
Melnikov’s chaos is just the chaos of perturbed solutio
@21#. To do this, we set

N151/21x, N251/22x, x5N121/25~N12N2!/2

~11!

and change Eq.~10! into
02620
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ẍ52~112LH !x22L2x32DE@H1DE/2

1~DE1L!x13Lx2#. ~12!

The functionx(t) is a half of the population imbalance (N1
2N2).

The parametersDE5” 0 describes the trap asymmetr
WhenDE is very small, the terms proportional to it can b
regarded as perturbations to the symmetric system withDE
50. In addition to a time-independent trap asymmetryDE0,
we can impose a periodically driven term into the trap asy
metry, by a small oscillation in the laser barrier positio
@17,32#, such that

DE5DE~ t !5DE01DE1 sinvt for uDE0,1u!1.

~13!

Application of Eq.~13! to Eq. ~9! makes the latter the time
dependent HamiltonianH5H(N1 ,f,t) with the time deriva-
tive

Ḣ~ t !5
]H

]t
1

]H

]N1
Ṅ11

]H

]f
ḟ5

]H

]t
52

dDE

dt
N1

52vDE1 cosvtS x1
1

2D . ~14!

Integrating this equation yields

H~ t !5H01H1~ t !, H1~ t !52vDE1E cosvtS x1
1

2Ddt,

~15!

where H0 is a constant andH1(t) a first-order small term
proportional toDE1. Combining Eqs.~13! and~15! with Eq.
~12! result in the Duffing equation with periodical perturb
tions. By making use of the Melnikov-function or numeric
method, chaotic oscillation of the system has been dem
strated@21,33#. In the following sections, we will use a direc
perturbation approaches@24,34# to analyze the chaotic be
havior of the macroscopic wave function. We expandx to
first order

x5x01x1 , ux0u@ux1u;uDEu. ~16!

Herex0 denotes the unperturbed solution andx1 is the first-
order corrections. Inserting the above expression and
~15! into Eq. ~12! yields the zero-order equation

ẍ052~2LH011!x022L2x0
3 ~17!

and first-order equation

ẍ152~2LH011!x126L2x0
2x12«1~ t !,

«1~ t !5DE~ t !@H01Lx0~ t !13Lx0
2~ t !#12LH1~ t !x0~ t !.

~18!
2-2
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The unperturbed Eq.~17! has the well-known periodical so
lution for (2LH011).0 and homoclinic solution for
(2LH011),0. We are interested in the latter associa
with chaos,

x0~ t !5A2~2LH011!/L2 sechj, j5A2~2LH011!t

1C,

C5Ar sech@x0~ t0!/A2~2LH011!/L2#

2A2~2LH011!t0 ~19!

for (2LH011),0 with t0 being the initial time. Applying
Eq. ~19! to Eq. ~18!, we construct the general solution@34#

x15x19E
A

t

x18«1~ t !dt2x18E
B

t

x19«1~ t !dt, ~20!

whereA and B are the integration constants,x18 and x19 the
functions

x185 ẋ05@2~2LH011!/L#sechj tanhj,

x195x18E ~x18!22 dt5~L/2!@2~2LH011!#23/2

3sechj~223j tanhj2sinh2 j!. ~21!

In the first-order approximation, usingx0(t) in Eq. ~19! in-
stead ofx in Eq. ~15! can give the integrand ofH1 as an
explicit function of time. However, the integration is analy
cally unsolvable. Taking the parameter set

H050.5, L522, v51, DE05DE150.1,

C5p/2, A5B50 ~22!

from Eqs. ~15! we numerically plot the time evolution o
H(t) as Fig. 1. The curve shows the Hamiltonian tending
periodically oscillate with the increase of time. Combinin
Eq. ~22! with Eqs. ~16! and ~19! we have the unperturbe
population imbalance 2x0(t).0 for all times, which implies
the chaotic self-trapping@23,24#.

Generally, the first correction~20! is unbounded, becaus
of the unboundedness ofx19 as time tending to infinity. How-

FIG. 1. Plot of the time evolutions of the dimensionless Ham
tonianH(t) for the dimensionless time normalized tov215\/2K.
02620
d

o

ever, we can easily prove that, using the l’Hoˆpital rule, Eq.
~20! is bounded, if and only if it satisfies the conditio
@24,34#

I 65 lim
t→6`

E
A

t

x18«1~ t !dt50. ~23!

From I 12I 250 eliminating the constantA yields the well-
known Melnikov function

M ~ t0!5E
2`

`

x18«1~ t !dt50, ~24!

which indicates the existence of chaos and the chaotic re
in parameter space@21,24#. We call the solution~20! obeying
the chaos criterion~24! the ‘‘chaotic solution’’@26#. Further
inserting N1(t) into Eq. ~7!, we find the phase differenc
f(t) is also chaotic. Applying the chaotic relative occup
tions uc1(t)u25N1(t)51/21x, uc2(t)u25N2(t)51/22x
and phase differencef(t) to Eq.~2! leads to the correspond
ing chaos of the probability densityuC(rW,t)u2. Note that the
chaos for the probability density comes from the definition
the classical chaos. This gives an important connection
tween the classical chaos and macroscopic quantum ch
In the chaotic region of parameter space, although the p
ability density is deterministic for a set of fixed initial con
ditions and system parameters, it sensitively depends on
conditions and parameters, therefore, is unpredictable. Th
will be numerically illustrated in the following section.

III. INPREDICTABILITY OF THE CHAOTIC
PROBABILITY DENSITY

Before computing the time evolution of probability de
sity, it is necessary to analyze the incomputability of t
chaotic solution~20!. Combining Eqs.~20! and~21! with Eq.
~18! we perceive that the first term of Eq.~20! insists of an
unbounded functionx19(t) and an analytically unsolvable in
tegration, which cannot be expressed as a finite form of
ementary functions. To numerically give the time evoluti
of Eq. ~20!, the small deviations from the unsolvable integr
tion are unavoidable, since any computer cannot calcu
the infinite terms implied in the integration. These deviatio
also may come from the use of different numerical integ
tion methods and different integration steps, even differ
precisions for the representation of real numbers in the c
puter. On the other hand, the deviations necessarily dep
on the initial conditions associated withA and the system
parameters. Any infinitesimal deviation will destroy th
boundedness condition~23! and be amplified exponentially
by the exponentially increasing functionx19(t), until infinity
as t→`. This is just the so-called sensitive dependence
chaos on the parameters and algorithm. Thus we theo
cally demonstrate that the corrected solution~20! is analyti-
cally bounded but numerically unbounded, therefore unco
putable. The analytical insolvability and numeric
incomputability lead to the inpredictability of the probabilit
densities.

Applying the functionsx0(t), «1(t) and the parameters in

-
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Eqs.~22! to Eqs.~16!, ~20!, and~21! makes the solution the
explicit form

x50.5 sechj1x1~ t !,

x1~ t !50.5 sechj~223j tanhj2sinh2 j!

3E
0

j

sechj tanhj@~0.110.1 cosj!

3~0.52sechj21.5 sech2 j!22H1~j!sechj#dj

20.5 sechj tanhjE
0

j

sechj~223j tanhj2sinh2 j!

3@~0.110.1 cosj!~0.52sechj21.5 sech2 j!

22H1~j!sechj#dj ~25!
02620
with variablej5t1p/2 and

H1~j!520.05E
0

j

sinj~11sechj!dj. ~26!

Given Eqs.~25! and ~26!, we find that the first integrand in
Eq. ~25!, namely, the integrand in Eqs.~23! and ~24! is an
odd function such that the boundedness condition~23! with
A50 and chaos criterion~24! have been satisfied.

In Ref. @27#, Saito and Ueda numerically gave the tim
evolution of the wave function at the origin of spatial coo
dinate, and showed the intermittent implosion for the trapp
BECs with an attractive interaction. For the considered tw
state model ~2!, the probability density at rW5rW0
(5constant vector) reads
uC~rW0 ,t !u25uF1~rW0!u2uc1~ t !u21uF2~rW0!u2uc2~ t !u21F1~rW0!F2* ~rW0!c1~ t !c2* ~ t !1F1* ~rW0!F2~rW0!c1* ~ t !c2~ t !

5uF1~rW0!u2N1~ t !1uF2~rW0!u2N2~ t !1F1~rW0!F2* ~rW0!AN1N2eif1F1* ~rW0!F2~rW0!AN1N2e2 if

5uF1~rW0!u2N1~ t !1uF2~rW0!u2N2~ t !1AN1N2$@F1~rW0!F2* ~rW0!1F1* ~rW0!F2~rW0!#cosf

1@F1~rW0!F2* ~rW0!2F1* ~rW0!F2~rW0!# i sinf%. ~27!
e
with
By making use of Eqs.~7!, ~9!, ~11!, and~15!, the probability
density becomes

uC~rW0 ,t !u25uF1~rW0!u2~1/21x!1uF2~rW0!u2~1/22x!

1@F1~rW0!F2* ~rW0!1F1* ~rW0!F2~rW0!#

3@H01H1~ t !1DE~ t !~x11/2!1Lx2#

1 i @F1~rW0!F2* ~rW0!2F1* ~rW0!F2~rW0!# ẋ~ t !.

~28!

We set F1(rW0)5AR1(rW0)eia1, F2(rW0)5AR2(rW0)eia2,
a12a25a(rW0), obtaining

uC~rW0 ,t !u25R1~rW0!~1/21x!1R2~rW0!~1/22x!

12AR1~rW0!R2~rW0!cosa~rW0!

3@H01H1~ t !1DE~ t !~x11/2!1Lx2#

22AR1~rW0!R2~rW0!sina~rW0!ẋ~ t !. ~29!

Here the functionẋ(t) is given by Eqs.~16!, ~19!, and~20!
as
ẋ~ t !5~2LH011!L21 sechj tanhj1 ẋ19E
A

t

x18«1~ t !dt

2 ẋ18E
B

t

x19«1~ t !dt. ~30!

When the parameter set~22! is adopted, the functionẋ(t)
denotes the time derivative of Eq.~25!, namely,

ẋ~ t !520.5 sechj tanhj10.5~3j sechj26j sech3 j

26 sechj tanhj2sinhj!

3E
0

j

sechj tanhj@~0.110.1 cosj!

3~0.52sechj21.5 sech2 j!22H1~j!sechj#dj

20.5~sech3 j2sechj!

3E
0

j

sechj~223j tanhj2sinh2 j!

3@~0.110.1 cosj!~0.52sechj21.5 sech2 j!

22H1~j!sechj#dj . ~31!

The constantsR1 , R2, anda can be normalized by suitabl
units and may take different values that are associated
2-4
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different rW0. We shall consider the general case and sev
typical cases to plot the time evolutions of the probabil
density as follows.

Case 1: the general case. Any term of Eq.~29! does not
identically vanish. Let the constants beR151.5, R2
50.5, a5p/3. Substituting them and the functionsH1(t) in
Eq. ~26! andDE(t)50.1(11cosj) into Eq. ~29!, produces

uC~rW0 ,t !u251.476 31410.043 301 3Fsechj1cosj~1

1sechj!2E
0

j

sinj~11sechj!djG
20.433 013 sech2~j!1x~j!

21.732 05 sechjx1~j!21.5ẋ~j!, ~32!

where second-order small terms have been omitted. Su
tuting x(j) andx1(j) in Eqs.~25! and ẋ(j) in Eq. ~31! into
Eq. ~32!, we employ the Mathematica to plot the solid cur
of the probability density versus time in Fig. 2~a!.

Case 2: a simplest case. R1 or R2 is zero. SettingR1
51, R250 and fixing other parameters to Eqs.~22! yields
the probability density uC(rW0 ,t)u25N1(t)5x(t)11/2,
which is drawn in Fig. 2~a! as the dashing line.

Case 3: R15” R2 ,cosa50. We select the constantsa
5p/2, R151.5, andR250.5, gettinguC(rW0 ,t)u2511x(t)

FIG. 2. Plots of the chaotic probability densitiesuC(rW0 ,t)u2 ver-
sus time, which are dimensionless. The solid curve in~a! corre-
sponds to the constantsR151.5, R250.5, a5p/3. The dashing
line is associated withR151, R250 and the dotted line witha
5p/2, R151.5, andR250.5. These curves contain some nonphy
cal implosions and infinities fort.14, which are amplified in~b!.
02620
al

ti-

21.732 05ẋ(t). The corresponding curve of the time evol
tion is plotted in Fig. 2~a! as the dotted line.

Case 4: R15R2 ,sina50. Taking R15R251, a50 and
omitting the second-order small terms give

uC~rW0 ,t !u252.0510.1 sechj2sech2 j

10.1 cosj~sechj11!

20.1E
0

j

sinj~11sechj!dj22 sechjx1~j!.

~33!

We plot its time evolution in Fig. 3.
The curves in Fig. 2~a! display that the probability densi

ties of different spatial pointrW0 are nonperiodical for smal
time and occur implosions aftert514, and ultimately tend to
infinity. Dense parts of the curves describe the implosio
and show the inpredictability of the states, which are exh
ited in Fig. 2~b!. From Eqs.~25! and ~31! we can perceive
that the two integrations of them is unsolvable and the fi
one is multiplied by an exponentially increasing function. O
the one hand, under the boundedness condition~23!, the
l’Hôpital rule infers the orbit~25! and~31! to be analytically
bounded at an infinite time. On the other hand, in numer
computation, some unavoidable small deviations from
unsolvable integration may be exponentially amplified by
exponentially increasing function, until infinity ast→`.
This contradiction between the analytical results and num
cal ones reveals that the probability density~29! with Eqs.
~25! and ~31! is uncomputable. The implosions and infini
of the numerical results in Fig. 2~b! are nonphysical or
purely mathematical, which completely come from the n
merical incomputability@8,26#. In Fig. 3 we show a quite
interesting result that for some spatial coordinatesrW0 of case
4 the implosion and infinity disappear and the motion a
proaches periodical one.

Generally, the analytically unsolvable integrations impli
in Eq. ~29! makes the probability density the analytical
unpredictable. And the implosions and infinity of numeric
results lead to the numerical inpredictability of the probab

-

FIG. 3. Periodical oscillation of the dimensionless probabil

density for the coordinatesrW0 corresponding to the constant s
R15R251, a50.
2-5
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ity density. The inpredictability of deterministic system is
basic feature of the macroscopic quantum chaos.

IV. CONTROLLING THE IMPLOSIONS
AND UNBOUNDEDNESS

The probability density is an impotant quantity for th
considered quantum system. An useful theory should en
us to predict it and the corresponding properties of the s
tem. However, as we have seen that the system exists s
chaotic states characterized by the implosions and unbo
edness of numerical solutions, which are unpredictable
order to theoretically predict the physical properties, we h
to control the implosions and unboundedness. We shall pr
that regulating the initial conditions can attain the purpos

We recall the relationship between the initial conditio
and the homoclinic solution~19! of Eq. ~17!. The first inte-
gration of Eq.~17! is

ẋ0
2~ t !5C12~2LH011!x0

2~ t !2Lx0
4~ t !, ~34!

C15 ẋ0
2~ t0!2~2LH011!x0

2~ t0!2Lx0
4~ t0!

with t0 being the initial time. This equation gives the h
moclinic solution only for the integration constantC150,
which limits the initial valuesẋ0(t0) andx0(t0) to depend on
each other. Another integration constantC in the second of
Eqs.~19! possesses an interesting property, namely, when
initial valuex0(t0) of the half population imbalance is equ
to zero, the constantC becomes infinity for finitet0. Now we
assume that one experimentally adjusts the initial value
ẋ0(t0)'0 andx0(t0)'0 so thatC150 andC→`. In this
case, we take the parametersH050.5, L522, v51 such
that the variable in Eqs.~19! becomesj5 limC→`(C1t).
Thus we have good approximation

sinhj' lim
C→`

eC1t/2, sechj' lim
C→`

2e2(C1t), tanh~C1t !

'1. ~35!

Using this approximation to Eqs.~18!, ~19!, ~20!, ~21!, and
~13! gets x0'0, «'H0DE(t)50.5DE(t)50.05(11sint)
and the orbit

x'x1'0.025e2tE
B

t

et~11sint !dt20.025et

3E
A

t

e2t~11sint !dt,

ẋ' ẋ1'20.025e2tE
B

t

et~11sint !dt20.025et

3E
A

t

e2t~11sint !dt. ~36!

Obviously, boundedness of the solution needsA5` and B
being finite. SettingA5`, B50, Eqs.~36! represent a peri-
02620
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odical orbit. Inserting suchx(t), ẋ(t), and Eqs.~15!, H1'
20.05sint, into Eq. ~29! and selectingR151.5, R250.5, a
5p/3 of the general case, we arrive at

uC~rW0 ,t !u251.476 3141x~ t !21.5ẋ~ t !

51.476 31410.0625e2tE
0

t

et~11sint !dt

10.0125et È t

e2t~11sint !dt. ~37!

This is also a periodical function of time that has been n
merically illustrated in Fig. 4. The periodical oscillation o
the probability density is predictable. Thus we have co
trolled the implosions and unboundedness, through the
justments of the initial conditions. Knowing Eqs.~11! and
~16!, the considered initial conditionsẋ0(t0)'0 andx0(t0)
'0 means thatN1(t0)'N2(t0) andṄ1(t0)'Ṅ2(t0)'0, that
is, initially, the unperturbed particle numbers in each trap
be approximately same and invariable. Therefore, if one
realize such initial conditions experimentally by adjusti
the system, the macroscopic quantum chaos will be s
pressed.

V. CONCLUSION

In summary, we have studied the macroscopic quan
chaos of two zero-temperature BEC confined in a doub
well magnetic trap. Using the time-dependent self-consis
field method and the macroscopic one-body wave functi
we investigated the BJJ equations that describe time ev
tions of the relative occupations and phase difference. Un
the Melnikov criterion of classical chaos, we find the chao
quantum system possessing deterministic but unpredict
probability density. That is, the probability density is analy
cally bounded but numerically unbounded, and the numer
result appears the nonphysical implosions and unbound
ness. This makes the system the analytically unsolvable
numerically uncomputable, which result in the theoretical
predictability of the chaotic probability density.

It is clear that although a regular quantum system mus
made probability interpretation, the corresponding proba

FIG. 4. Periodical oscillation of the dimensionless probabil

density versus dimensionless time for the initial conditionsẋ0(t0)
'0, x0(t0)'0 and the constantsR151.5, R250.5, a5p/3,
where the implosions and infinities have been controlled.
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ity is deterministic and predictable. However, the chao
quantum systems not only need probability interpretation
also the corresponding probability is unpredictable. Acco
ing to the general definition, chaos is merely a synonym
randomness of the deterministic systems@8#. The above re-
sult shows that the macroscopic quantum motion with r
dom probability density is an essential feature of the mac
scopic quantum chaos. To theoretically predict t
macroscopic quantum states, we suggest a method for
trolling the nonphysical implosions and unboundedne
cs

-

tt.

ev

an

n,

:

et

e

hy

hy

02620
c
t
-
r

-
-

e
n-

s,

namely, regulating the initial conditions to make the chao
solution the periodical one.
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